You Searched For: Potassium+difluoroacetate


92 401  results were found

SearchResultCount:"92401"

Sort Results

List View Easy View (new)

Rate These Search Results

Catalog Number: (BOSSBS-3034R-A350)
Supplier: Bioss
Description: This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-7689R)
Supplier: Bioss
Description: Potassium channels are a group of ubiquitously expressed proteins that serve numerous functions in excitable and non-excitable cells. One class of integral membrane potassium channels is the large conductance, calcium-activated potassium channel (Maxi K+). Maxi K+ differs from most other potassium channels in that its activation is controlled by both increases in intracellular calcium and by membrane depolarization. Maxi K+ dual activation is possible because of its structure. The core of the channel, which is similar to other potassium channels, is a Maxi K+ alpha homotetramer that contains both a voltage sensor and an intracellular calcium binding domain. In vascular smooth muscle, an auxiliary beta-subunit is found in a 1:1 stoichiometry. The beta-subunit exhibits its effect on the Maxi K+ channel by effectively decreasing by 5- to 10- fold the concentration of calcium required to keep the pore open. Maxi K+ beta is the target for possible therapeutics because of its role in blood flow and blood pressure regulation.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5403R-CY5)
Supplier: Bioss
Description: KCNC1 mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. It forms a heteromultimer with KCNG3, KCNG4 and KCNV2.
UOM: 1 * 100 µl


Catalog Number: (84789.180)
Supplier: VWR Chemicals
Description: Stray light standards packed in permanently sealed UV cuvettes or 100 ml amber bottle.
UOM: 1 * 100 mL

Catalog Number: (BOSSBS-3034R-A488)
Supplier: Bioss
Description: This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5402R-A488)
Supplier: Bioss
Description: KCNC1 mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. It forms a heteromultimer with KCNG3, KCNG4 and KCNV2.
UOM: 1 * 100 µl


Catalog Number: (87815.290)
Supplier: VWR Chemicals
Description: Starting materials:
Solution A. Copper sulfate R/ Water R
Solution B. anhydrous Sodium carbonate R / Potassium sodium tartrate R/ Sodium hydrogen carbonate R/ anhydrous Sodium sulfate R/ Water R
UOM: 1 * 1 L

Catalog Number: (R033)
Supplier: G-Biosciences
Description: Molecular biology universal kit, contains 25 ml each of ammonium acetate, calcium chloride, EDTA, lithium acetate, magnesium chloride, potassium acetate, potassium chloride, SDS, sodium chloride, TE, Tris pH 7,0 and Tris pH 8,0
UOM: 1 * 1 KIT


Catalog Number: (BOSSBS-2960R-CY5)
Supplier: Bioss
Description: Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. It is activated by internal ATP and probably plays an important role in potassium homeostasis. The encoded protein has a greater tendency to allow potassium to flow into a cell rather than out of a cell. Mutations in this gene have been associated with antenatal Bartter syndrome, which is characterized by salt wasting, hypokalemic alkalosis, hypercalciuria, and low blood pressure. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-7689R-A488)
Supplier: Bioss
Description: Potassium channels are a group of ubiquitously expressed proteins that serve numerous functions in excitable and non-excitable cells. One class of integral membrane potassium channels is the large conductance, calcium-activated potassium channel (Maxi K+). Maxi K+ differs from most other potassium channels in that its activation is controlled by both increases in intracellular calcium and by membrane depolarization. Maxi K+ dual activation is possible because of its structure. The core of the channel, which is similar to other potassium channels, is a Maxi K+ alpha homotetramer that contains both a voltage sensor and an intracellular calcium binding domain. In vascular smooth muscle, an auxiliary beta-subunit is found in a 1:1 stoichiometry. The beta-subunit exhibits its effect on the Maxi K+ channel by effectively decreasing by 5- to 10- fold the concentration of calcium required to keep the pore open. Maxi K+ beta is the target for possible therapeutics because of its role in blood flow and blood pressure regulation.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-2960R-A555)
Supplier: Bioss
Description: Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. It is activated by internal ATP and probably plays an important role in potassium homeostasis. The encoded protein has a greater tendency to allow potassium to flow into a cell rather than out of a cell. Mutations in this gene have been associated with antenatal Bartter syndrome, which is characterized by salt wasting, hypokalemic alkalosis, hypercalciuria, and low blood pressure. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9931R-A680)
Supplier: Bioss
Description: Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins. It may associate with two other G-protein-activated potassium channels to form a heteromultimeric pore-forming complex.
UOM: 1 * 100 µl


Catalog Number: (CRM498-100G)
Supplier: Merck
Description: pH/Conductivity CRM - clay soil, Supelco®
UOM: 1 * 100 g


Supplier: APOLLO SCIENTIFIC
Description: Cyanimidodithiocarbonic acidmonomethyl ester monopotassium salt 95%

Catalog Number: (BOSSBS-6760R-A647)
Supplier: Bioss
Description: Probably important in cardiac repolarization. Associates with KCNE1 (MinK) to form the I(Ks) cardiac potassium current. Elicits a rapidly activating, potassium-selective outward current. Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current in CHO cells in which cloned KCNQ1/KCNE1 channels were coexpressed with M1 muscarinic receptors. May associate also with KCNE3 (MiRP2) to form the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions, which is reduced in cystic fibrosis and pathologically stimulated in cholera and other forms of secretory diarrhea.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11728R-CY7)
Supplier: Bioss
Description: Epilepsy affects about 0.5% of the world’s population and has a large genetic component. Epilepsy results from an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signaling, determining the firing properties and responsiveness of a variety of neurons. Benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, has been shown to be caused by mutations in the KCNQ2 or the KCNQ3 potassium channel genes. KCNQ2 and KCNQ3 are voltage-gated potassium channel proteins with six putative transmembrane domains. Both proteins display a broad distribution within the brain, with expression patterns that largely overlap.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 88 22222.
1 297 - 1 312 of 92 401
no targeter for Bottom