You Searched For: Polydimethylsiloxane,+hydroxy+terminated


8  results were found

Sort Results

List View Easy View (new)
SearchResultCount:"8"
Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-FITC
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-CY7
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-A680
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-HRP
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-A488
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-CY3
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-A647
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-A750
UOM: 1 * 100 µl
Supplier: Bioss


Description: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Catalog Number: BOSSBS-12448R-A350
UOM: 1 * 100 µl
Supplier: Bioss


Description: Antimony Standard, 1000 mg/L, Certipur®, Supelco®, Antimony, Matrix: 7% HCl, Application: ICP standards
Catalog Number: 1.70302.0100
UOM: 1 * 100 mL
Supplier: Merck


Description: Antimony(V) fluoride for synthesis, Sigma-Aldrich®
Catalog Number: 8.12034.0100
UOM: 1 * 100 g
Supplier: Merck


Description: Antimony(V) chloride for synthesis, Sigma-Aldrich®
Catalog Number: 8.07837.0025
UOM: 1 * 25 mL
Supplier: Merck


Description: Antimony Standard, 1000 mg/L, Certipur®, Supelco®, Antimony, Matrix: 2 M HCl, Application: AAS standards
Catalog Number: 1.70204.0500
UOM: 1 * 500 mL
Supplier: Merck


Description: Antimony 99+%, powder 0.15 mm
Catalog Number: ACRO192450100
UOM: 1 * 10 g
Supplier: Thermo Scientific


Description: Meglumine antimoniate
Catalog Number: ACRO461141000
UOM: 1 * 100 g
Supplier: Thermo Scientific


Description: Antimony ≥99.99% (metals basis), ingot
Catalog Number: 00030.A1
UOM: 1 * 1 kg
Supplier: Alfa Aesar

33 - 8 of 8